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Abstract
Most modern high performance storage systems

store data in large repositories of removable media
volumes. Management of the removable volumes is
performed by a software module known as a Physical
Volume Library (PVL). To meet performance and
scalability requirements, a PVL may be asked to mount
multiple removable media volumes for use by a single
client for parallel data transfer. Mounting sets of
volumes creates an environment in which it is possible
for multiple client requests to deadlock while attempting
to gain access to storage resources.

Scenarios leading to deadlock in a PVL include
multiple client requests that contend for the same
cartridge(s), and client requests that vie for a limited set
of drive resources. These deadlock scenarios are further
complicated by the potential for out-of-order volumes to
be mounted (for example, by Automatic Cartridge
Loaders or human operators).

This paper begins by introducing those PVL
requirements which create the possibility of deadlock.
Next we examine traditional approaches to deadlock
resolution and how they might be applied in a PVL.
This leads to a design for a PVL which addresses
deadlock scenarios. Following the design presentation is
a discussion of possible design enhancements. We end
with a case study of an actual implementation of the
PVL design in the High Performance Storage System
(HPSS).

1. Introduction
Processing power and data collection abilities have

been increasing faster than storage system bandwidth and
capacity for many years [1, 2]. This growing gap has
caused the storage system to become a bottleneck for
more and more applications. While techniques such as
third party transfer and network attached peripherals [3]
address this bottleneck, existing storage systems
continue to fall short of meeting the present and predicted
data storage and retrieval needs of supercomputers,
massively parallel processors, and networks of
workstations.

In response, researchers working on the next
generation of storage systems are looking for innovative,
open solutions which will narrow the storage gap. The
IEEE Reference Model for Open Storage Systems
Interconnection (Project 1244) [4] defines a storage
architecture which addresses the needs of high-end storage
clients. The reference model defines a set of cooperating
modules and interfaces which combine to form a
functional storage system. The focus of this paper deals
mostly with the design aspects of one of these modules
known as the Physical Volume Library (PVL).

A quick overview of the reference model's PVL
module and those modules most closely associated with
the PVL is necessary:

Physical Volume Library (PVL)

A PVL is responsible for mounting and
dismounting physical volumes (tape, optical
disk, magnetic disk) and queuing mount requests
when required drives and media are in use. The
PVL accomplishes any physical movement of
media that might be necessary by making
requests to a Physical Volume Repository.

Physical Volume Repository (PVR)

A PVR manages the agent, robotic or human,
responsible for mounting and dismounting
storage media [5].

The Virtual Storage Server (VSS)

The VSS maps virtual storage, including striped
and mirrored data, onto physical storage media.
The virtual storage server issues requests to the
Physical Volume Library to mount physical
volumes.

The Mover

A mover transfers data between clients and
storage media [6]. The mover is used by the
Physical Volume Library to read internal media
labels.



At this point we need to define few other terms that
we will using throughout the paper:

Cartridge

A cartridge is a transportable object managed by
a PVL and physically mounted by a PVR.

Physical Volume

A physical volume (often called a volume in
this paper) is the portion of a cartridge which
can be contiguously accessed when mounted.

Media

Media is any readable and/or writeable data
storage area.

Virtual Volume

A virtual volume is one or more physical
volumes which are logically combined to
represent a single data storage area.

While a physical volume mount request maps
directly to a request to mount media, the cartridge
containing the media may hold one or more physical
volumes. For example, with some optical platters, the
transportable object (the cartridge) is the optical platter
itself. If the platter is capable of storing data on each of
its sides, the cartridge could be considered to hold two
physical volumes represented by the two sides of the
platter. Tape cartridges capable of partitioned access may
similarly be configured to contain multiple physical
volumes.

The PVL is the enterprise wide manager of volume
and drive resources and is responsible for queuing mount
requests to prevent resource contention. The PVL
translates client (VSS) requests to mount a physical
volume into requests to mount a specific media. When a
volume is requested the PVL identifies the PVR which
manages the media. It then allocates the requested media
and drive resources (using one of many possible queuing
and allocation schemes) and issues mount commands to
the PVR. When the PVR has mounted the media, the
PVL verifies the internal media label via requests to a
mover.

In a high performance storage environment, it is
often necessary that a single bitfile be striped across
multiple physical volumes in order to attain an adequate
data transfer rate. For example, a modern high
performance tape drive might read and write at about 10
megabytes-per-second (MB/s) and might store 20
gigabytes (GB) of data on a cartridge. If a bitfile is
striped across four such tape drives, the resulting virtual
volume will appear to the client to read and write at 40
MB/s and to store 80 GB. It should be noted that, while

the advantages of striping are obvious, deciding when and
how wide to stripe a bitfile is challenging [7, 8, 9].

High performance storage systems that implement
striping require that sets of volumes be mounted together
in order to satisfy striped data requests. For this paper we
make the assumption that striped data can not be accessed
until all volumes making up the virtual volume are
mounted. This assumption is necessary in cases such as
direct tape-to-tape copies (when the source stripe width
does not match that of the sink) and tape-to-display
copies where a system does not typically have enough
memory to buffer data while awaiting mounts. Sets of
volumes may also be needed for other purposes such as
creating mirrored copies of data. It is in the process of
satisfying atomic mounts of sets of volumes that a
potential for deadlock arises in a PVL.

2. Problem statement
A system is considered to be deadlocked if every

activity in the system is waiting for an event which can
only be generated by another activity in the system [10].
Mounting volumes in a high performance storage
environment can cause deadlock in three different ways:

• Drive resource contention

• Out-of-order mounts

• Multiple requests for the same cartridge

Non-deadlock scenarios involving clients that
monopolize resources can also effectively prevent the
allocation of storage resources. In this section we will
discuss these scenarios after first investigating the
potential for deadlock caused by each of the three
deadlock conditions.

2.1. Drive resource contention
A PVL is required to mount multiple physical

volumes together for striped bitfile access. In most
parallel environments all physical volumes must be
mounted concurrently to satisfy the striped request.
Mounting three out of four cartridges for a striped tape
request does not typically allow the data to flow, and the
three drive units occupied by the mounted tapes are not
free to satisfy other requests during the wait for the
fourth cartridge. Worse yet is the potential for deadlock if
the required fourth drive resource will never become
available because another request, which will not
complete until one of the drives occupied by the first
request is relinquished, occupies the remaining drives.

This simple deadlock scenario is illustrated in
Figure 1. In this example a PVL managing four drives
has two separate requests, one for a four-wide stripe and a
second for a three-wide stripe. The PVL has mounted two
cartridges for each request and is deadlocked waiting for
drives to free for each request.



Client 1

Reading data from a 4-wide stripe:
VOL001, VOL002, VOL003, VOL004

Client 2

Reading data from a 3-wide stripe:
VOL095, VOL096, VOL097

VOL096 VOL097VOL003VOL001

Figure 1. Two clients deadlocked waiting for drives

Another aspect of this deadlock scenario is that,
even if one of the striped requests is satisfied, data may
not be able to flow until both mount requests are
satisfied concurrently. If the two clients in Figure 1 were
attempting a tape-to-tape copy directly from one set of
striped tapes to another (Client 1 to Client 2); all source
and sink tapes would need to be mounted for data to
flow. If the two clients involved submit their striped
mount requests separately, even if one of the stripe sets
is successfully mounted without deadlocking, that striped
set will occupy drives without moving data until the
second stripe set is mounted. If the second stripe set is
unable to mount due to resource contention, PVL
deadlock is achieved. In fact, the example tape-to-tape
copy would be impossible given the hardware in Figure
1, as seven drives would be required for the copy. It
should be noted that, if the tape-to-tape copy was
between a like number of tapes (four-wide stripe to four-
wide stripe) copying could be accomplished by copying
each stripe independently.

2.2. Out-of-order mounts
The potential for out-of-order volumes being

mounted creates another deadlock scenario in a PVL.
Out-of-order volumes are those volumes which have been
requested by a client (or perhaps will be requested soon
by a client) but have not yet been requested of the PVR
by the PVL. In addition to out-of-order volume mounts
caused by operator and robot error, another common
mechanism which can cause out-of-order volume mounts
is the use of a traditional sequential Automatic Cartridge
Loader, more commonly referred to as a stacker. This
device mounts the next cartridge in its stack as soon as
the current cartridge is unloaded. No external command is
required from the PVL or PVR for such a mount. If the
PVL keeps the out-of-order volume mounted (possibly to
satisfy another queued request) the same type of deadlock
condition we observed previously could occur [see Figure
2].



Client 1

Reading data from a 4-wide stripe:
VOL001, VOL002, VOL003, VOL004

Client 2

Reading data from a 4-wide stripe:
VOL095, VOL096, VOL097, VOL098

VOL001

VOL095

CLN001

VOL002

VOL096

CLN002

VOL003

VOL097

CLN003

VOL098

VOL004

CLN004

Figure 2. Two clients deadlocked due to cartridge order in stackers

Note that, in Figure 2, there is no way for both
client requests to succeed without operator intervention.

Another scenario made possible by out-of-order tape
mounts is one leading to a state of indefinite
postponement of a client request (also called livelock
[11]). If, when an out-of-order mount occurs, the PVL
uses the volume to satisfy a queued request, other mount
requests which may have been older (or of higher
priority) will be postponed. Theoretically a mount
request might never be satisfied because out-of-order
mounts could indefinitely monopolize drive resources.

2.3. Multiple requests for the same cartridge
It is also possible for a PVL to deadlock based on

contention for cartridge resources. If two clients are
mounting striped sets that require different physical
volumes, but two of the volumes exist on the same
cartridge then deadlock could occur. This deadlock can
occur even though clients may be requesting discrete sets
of volumes, but in fact are requesting overlapping sets of
cartridges [see Figure 3].

Client 1

Reading data from a 2-wide stripe:
OD001a, OD002a

Client 2

Reading data from a 2-wide stripe:
OD001b, OD002b

OD001 a OD002 b Empty Empty

Figure 3. Two clients deadlocked waiting for volumes



2.4. Resource monopolization
In the subsection on out-of-order mounts we saw

how accepting out-of-order mounts could lead to the
indefinite postponement of requests even if it did not
cause deadlock. The end result is similar to deadlock in
that client requests to the storage system are never
satisfied. Resource monopolization is another condition
which can lead to indefinite postponement even when it
does not cause deadlock.

In some environments it is quite possible that an
apparently well behaved client may hold a resource
indefinitely. For example, some persistent process may
acquire a set of drives and volumes to use as scratch
space for calculations. Such a process would prevent
other storage system clients from ever accessing those
drives. While it is possible for a PVL to force a volume
to be dismounted, the result can lead to serious errors in
the client and corrupted data on the volume. Because of
this, most systems do not allow a PVL to force a client
to terminate the use of a drive/volume combination. For
the purposes of this paper we assume well behaved
clients which hold resources for some bounded amount of
time.

3. Traditional approaches to deadlock
Deadlock conditions have been well defined in

operating systems research. There are four conditions
necessary for deadlock to exist. Coffman et. al. [12]
introduced these conditions which, defined simply are:

Mutual Exclusion

A non-sharable resource is held by a process.
Other processes requesting the resource must
wait until it is relinquished.

Hold and Wait

A process is holding one or more resources and
is waiting to acquire additional resources.

No Preemption

A resource will only be released voluntarily by
the process which holds it.

Circular Wait

There exists a cycle in the dependency graph
which represents the processes, the resources
they hold, and the resources they have requested.
More formally, there exists a set of processes
{p0, p1, ..., pn} such that p0 is waiting for a
resource held by p1, p1 is waiting for a resource
held by p2, and so on, and pn is waiting for a
resource held by p0 [10].

When all four of these conditions are satisfied,
deadlock will occur. All three of the PVL deadlock cases

presented in section 2 satisfy all four deadlock
conditions.

There are three major approaches to dealing with
deadlock. Dietel [13] identifies these approaches as:

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection and Recovery

We will now examine each of these approaches and
their application to a PVL.

3.1. Deadlock prevention
Deadlock prevention entails eliminating any

possibility of a deadlock condition occurring. This is
done by ensuring that at least one of the four conditions
necessary for deadlock can never occur.

In a PVL it is impractical to try to eliminate the
Mutual Exclusion condition because drives can not be
assumed to be concurrently shared between clients. As
discussed in section 2.4, preemption is also not practical,
so the No Preemption condition also holds. Circular
Wait is generally a function of client requests. Because
clients do not typically coordinate independent requests
with one another, there is no way for them to guarantee
that their requests will never result in a circular wait for
resources. A PVL can not prevent such a condition as it
is unaware of all of its clients' higher level
interdependencies. Because of this we cannot eliminate
the Circular Wait condition in the PVL.

Our final chance at eliminating a deadlock condition
is to prevent the Hold and Wait condition from ever
occurring. As it turns out it would be trivial for a storage
system to eliminate this condition and thereby eliminate
any potential for deadlock. The PVL could simply
request drives for a client, but never hold drive resources
while waiting for others to become available. In this
manner a PVL mounting a four-wide stripe might request
the drives one at a time, releasing any successful drive
reservations if any one drive request couldn't be
immediately satisfied. While this prevention algorithm
eliminates the potential for deadlock, it represents a very
inefficient algorithm for obtaining resources. Depending
on the implementation, it can also lead to job resource
starvation.

3.2. Deadlock avoidance
Given information about how serially reusable

resources such as cartridges and drives will be used, it is
possible to construct an algorithm that avoids deadlock.
Deadlock avoidance algorithms avoid deadlock occurrence
through the judicious allocation of resources. An
example of a classical avoidance algorithm is Dijkstra's
Banker's Algorithm [14].

Storage system clients typically know the total
number of resources a job will require immediately at the
start of a job. A four-wide stripe requires four drives and



four volumes. A direct tape-to-tape copy of one four-wide
stripe to another requires eight drives and eight volumes.
If a PVL presents an interface allowing clients to provide
information about what mounts need to occur atomically
together, PVL deadlock can be avoided and the
possibility of client level deadlock (circular wait) is
diminished. Because of this, PVLs are well suited for the
application of deadlock avoidance algorithms. It should
be noted that clients which are not well behaved can still
deadlock themselves by independently requesting mounts
that are dependent on each other at a level higher than the
PVL.

3.3. Deadlock detection and recovery
Unlike deadlock avoidance, deadlock detection

algorithms make no effort to prevent deadlock from
occurring. Instead, the system is periodically examined to
determine if deadlock has occurred. Detection algorithms
typically involve checking resource allocation graphs for
cycles [15].

When it is determined that deadlock has occurred,
deadlock recovery must be invoked. Deadlock recovery
involves terminating processes or preempting resources
in order to break the deadlock. Deadlock detection and
recovery are often used in environments where deadlock
is unlikely and/or checking for deadlock at each request is
impractical.

In order to implement deadlock detection and
recovery in a PVL it must be possible for the deadlock to
be broken. As discussed in section 2.4, breaking deadlock
by preempting resources or by forcibly unmounting
client tapes in a PVL is at best difficult, and often is not
allowed.

4. A design for PVL deadlock avoidance
We would now like to outline the design of a PVL

meant to function in a high performance storage (striped
media) environment. We will concentrate on those
aspects of the design which address deadlock issues we
have raised and explain the rationale behind our design
decisions.

4.1. Design approach
We chose to combine deadlock avoidance techniques

with an algorithm designed to prevent indefinite resource
postponement. Deadlock prevention was rejected because
of its dependence on inefficient resource allocation
algorithms. Deadlock detection and recovery was rejected
because of the operational ramifications of the
requirement that a PVL be able to preempt or terminate
requests in order to recover from deadlock.

Our design presents a set of transactional
Application Programming Interfaces (APIs) to the client
application. These APIs allow a client to atomically
specify all of the resources which will be needed for a
single job. The set of required resources is used by the
deadlock avoidance algorithm to determine if all or part
of the request should be queued. The queuing mechanism

is first-come-first-served (non-preemptive) with defined
precedence rules for reserving storage resources. Out-of-
order mounts are allowed, but preemption of storage
resources is tightly controlled.

4.2. APIs for atomic mounts
In order to allow for atomic mounts, our PVL

design includes the following APIs:

MountNew(*JobID)

This interface is used to obtain a unique job
identifier. This identifier must be used in
subsequent PVL calls to identify a set of
physical volumes to be mounted in one atomic
operation.

MountAdd(VolumeID, JobID)

MountAdd is used to add a volume to a list of
volumes that will be atomically mounted under
a job identifier. JobID is obtained through a
previous call to MountNew. MountAdd should
be called once for each volume in an atomic
mount request

MountCommit(JobID)

This API commits (actually launches) the
atomic mount request associated with JobID.
Once the mount request has been built using
calls to MountAdd, MountCommit signals to
the PVL that the request building is complete
and that the job should be submitted.

Using these PVL APIs, a client can build a single
or multi-volume mount request and submit (commit) it
to the PVL. The interface also allows a pair of clients to
work together to create a single atomic mount request for
applications such as tape-to-tape copying. Imagine two
Virtual Storage Servers (VSSs) which need to copy data
from a tape virtual volume managed by one VSS to a
tape virtual volume managed by the other VSS. As
mentioned previously, to avoid deadlock and to maximize
drive utilization, the tape mounts for both VSSs should
be combined atomically. With our design's APIs, one
VSS could obtain a job identifier using MountNew. This
identifier could be shared by both VSS clients in the
building of a single mount request using calls to
MountAdd. Once the request was built, one of the VSSs
would be in charge of actually committing the combined
mount. Such an algorithm allows clients to avoid a
possible deadlock situation that the PVL would
otherwise be unable to prevent.

In our design the APIs allowing atomic mount
present an asynchronous interface. In order to notify a
client that mounts have completed, the design specifies
an API for client notification of mounts:



PVLNotify(JobID, VolumeID, DriveID)

PVLNotify is used to asynchronously inform a
client that the PVL has successfully mounted a
volume. Included with the notification is
information detailing the drive on which the
volume was mounted. This API is called by the
PVL as each volume is mounted.

4.3. PVL mount queuing
Internally our design accepts MountAdd requests,

queuing them until the job is committed. It is a job's
commit time which is used to initially order mount
requests (not the time of the MountAdds). Once a
commit is received for a job, the PVL first verifies that
the job does not require more resources than exist in the
system. The PVL also verifies that the job is requesting
valid volumes and that none of the volumes reside on the
same cartridge. At that point the PVL returns to the
client and indicates that the mount is in progress.

Asynchronously, the PVL begins allocating
resources. The key to deadlock avoidance is preventing
circular wait. Our deadlock avoidance algorithm achieves
this by requiring that the PVL follow a strict precedence
ordering in reserving resources and that those resources
be assigned to client requests in a specific order. It is our
experience that drive resources are typically much more
scarce than media resources. A typical site might have
thousands of cartridges and fewer than 20 drives. Because
drives are more scarce, our PVL first attempts to reserve
the media necessary for the request before trying to
reserve drives.

One aspect of our design is that cartridges, not
physical volumes, are reserved by the PVL. This is
important because, as mentioned previously, two or
more distinct physical volumes may reside on the same
cartridge. Reserving cartridges ensures that two mount
requests for physical volumes on the same cartridge are
not issued to a PVR concurrently. When a cartridge
resource becomes available, it will be given to the
appropriate mount job which has the earliest commit
time.

Once cartridge resources are reserved, the job is
placed in a second queue to reserve drive resources. Free
drive resources are allocated to requesting jobs based on
their order in the queue. No preemption of a job for
better resource utilization is allowed. This does have
potential drawbacks including less than optimal
utilization of drive resources.

Another important aspect of the design is the fact
that a particular drive is not reserved for a mount request,
rather a count of drives of the requested type is kept and
the mount request reserves a drive by decrementing a
count of available drives of the appropriate type. This
allows the PVL to deal with PVRs which do not allow
pre-assignment of drive resources.

An exception in this drive assignment algorithm is
made when the PVR managing the cartridge in question

is an operator PVR (human mounted drives). In this case
the PVL does not do any reservation of drives; rather it
immediately sends the request to the PVR (an exception
to this rule will be discussed when we describe how we
deal with out-of-order volume mounts). The benefits of
this technique are two-fold. First, allowing an operator to
see all tape mount requests rather than just the oldest
optimizes the process of retrieving cartridges from
vaults. Second, it allows for a more simplistic algorithm
to deal with out-of-order volume mounts which we will
discuss shortly.

When a volume mount has been assigned both its
cartridge and drive, the PVL asks the PVR to mount the
cartridge. Because the deadlock avoidance algorithm
guarantees that drive assignments will not cause
deadlock, we can mount each cartridge as soon as the
drive is assigned rather than waiting for drives to be
reserved for the entire job. When the PVR has
successfully mounted a cartridge, the PVL verifies the
internal media label using a mover. If the internal label
is correct the PVL responds to the client using the
PVLNotify API.

We have shown that this PVL design very simply
addresses both the problem of atomic mount induced
deadlock, and that of multiple concurrent requests for the
same cartridge resource. The design presented thus far has
not addressed the challenge of out-of-order mounts.

4.4. Out-of-order mount handling
As we discussed earlier, allowing an out-of-order

mount to be honored can lead to deadlock and indefinite
postponement. For our design we chose a simple
strategy which prevents deadlock due to out-of-order
mounts, but allows the use of conventional stackers at
the risk of indefinite postponement.

Before settling on a design, we considered the
simple algorithm of allowing no preemption of mount
requests. Under such an algorithm, if a volume is
mounted which has been requested by a PVL client, but
hadn't yet been requested to be mounted by PVL, then
the volume will be dismounted. Such an approach makes
extremely poor use of traditional stacker devices and
forces an operator to retrieve a dismounted cartridge and
place it back in the stacker before the mount can be
satisfied. This eliminates the primary labor-saving
advantage of using a stacker.

Because of this weakness we decided to allow out-
of-order mounts to be honored with some restrictions.
Our design accomplishes this by treating operator
mounted volumes specially. As we stated previously, our
deadlock avoidance algorithm sends operator mounted
volume requests to a PVR as soon as a cartridges are
reserved rather than first trying to reserve a drive. The
one exception to this rule is that, once mount requests
for a multi-volume mount involving an operator PVR
have begun, all subsequent mount requests for that PVR
are queued in the PVL until the hand mounted volumes
involved in the multi-volume mount are mounted. This



rule, combined with the rule that mounts are only
accepted if they have been requested by a PVL, ensures
that two multi-volume mounts will never deadlock on
operator controlled drive resources.

Important to our design is the requirement that
mount request displays communicate to operators which
volumes are associated together as part of a multi-
volume mount. This information is vital in order to
provide an operator enough information to keep him or
her from stacking two or more volumes that are part of
the same multi-volume mount in the same stacker. Also,
because we assume that most operator mount request
displays will show how long a particular mount request
has been outstanding, we depend on the operations staff
to make sure that the number of preemptions, and hence
the length of postponement, are minimized.

5. Possible enhancements to the design
The PVL design aspects we have presented represent

an attempt to, in an uncomplicated manner, satisfy
requirements imposed by a high performance storage
system while preventing resource deadlock. There are a
number of enhancements that might be made to this
design without violating our goal of maintaining PVL
simplicity.

5.1. Scheduling and preemption enhancements
Our PVL design operates fundamentally on a first-

committed first-served scheduling basis. The only
preemption allowed takes place when out-of-order
mounts are allowed in operator PVRs. One can imagine
any number of prioritization schemes that would allow
jobs to be scheduled based on an assigned job weight or
priority. Jobs could be assigned greater priority based on:

• client provided priority,

• system provided priority based on client id,

• client provided projected mount duration,

• statistical information on past client mounts,

• type of media being mounted,

• which requests would most optimally use
available drive resources,

• how many preemptions a job had already
sustained.

As long as the PVL followed the deadlock
avoidance rule that no circular wait be allowed, then any
weighted scheduling mechanism could easily be added to
our design without adding possible deadlock scenarios.

One can also imagine allowing the preemption of
jobs that the PVL has already sent to a PVR. This
preemption might be the result of jobs of a greater

weight (assigned by a prioritization scheme) arriving at
the PVL after submission of the original mount request
to the PVR. Implementing this kind of preemption
would require the addition of a mechanism to back out
the drive and cartridge allocation of preempted jobs, as
well as a mechanism to abort or dismount PVR requests
that are being preempted.

All of the priority weighting schemes listed (and
many more are possible) are very site dependent. Each
site will have different rules and preferences as to how a
job should be weighted based on their local environment.
In order to accommodate different weighting
mechanisms, the priority setting portion of the PVL
would best be implemented as a separate policy module
that each site could modify. Inputs to the policy module
would be all information known about the request, and
the output would be a priority weight to be assigned to
the job.

5.2. Adding client deadlock detection
One of the key features of our deadlock avoidance

algorithm is that the PVL is made aware of all resources
which will be used by the client to satisfy a single
request. Our PVL APIs allow one or more clients to
specify all of the resources a request will use; the PVL
uses this information to prevent deadlock. It is possible
that a poorly behaved client might deadlock itself by
issuing separate co-dependent PVL requests.

While our PVL design does not totally protect a
client from itself, it could be enhanced to detect when
client induced deadlock might have occurred. This
detection would rely on watching how long a particular
job has been mounted, possibly in conjunction with
client provided mount duration information. Regardless
of the detection method, the PVL could alarm operators
and/or clients that a deadlock condition may exist, or the
PVL could even be given the capability to unmount the
offending jobs.

5.3. Limiting the amount of preemption due to
out-of-order mounts

By honoring out-of-order mounts in our design, we
have introduced the possibility of indefinite
postponement. Possible approaches to minimizing the
impact of indefinite postponement might involve trying
to limit the extent or number of postponements allowed.

Eliminating the extent of a single postponement is
difficult for a PVL because, as we have seen, a PVL
typically can not unmount a volume on its own
prerogative. This fact alone makes any single
postponement one of indeterminate time and makes any
enhancement to this aspect of our design difficult. It is
only in systems where mount durations are well known,
controlled, or modifiable by a PVL, that allowing a
preemption does not entail some amount of
postponement risk.

Managing the number of times a mount request can
be postponed is an easier challenge. Setting a hard limit



on the number of preemptions, weighted priority
schemes, and aging algorithms could all be applied to aid
indefinite postponement detection and recovery with
some benefit. Unfortunately such algorithms are often
very dependent on particular site policies, and do not
eliminate the problem of any single postponement being
of unknown duration.

6. A case study - the HPSS PVL
The PVL design presented in this paper has been

implemented as part of the National Storage Laboratory's
[16] High Performance Storage System (HPSS) [17, 18]
under development by the National Storage Laboratory.
HPSS is a storage system that manages scalable, parallel
storage, possibly petabytes in size, requiring up to
several gigabytes per second aggregate throughput.
HPSS is designed to meet the needs of parallel
computers, traditional supercomputers and workstation
clusters. HPSS is based upon the IEEE Reference Model
for Open Storage Systems Interconnection and is
implemented using Open Software Foundation's (OSF)
Distributed Computing Environment Remote Procedure
Calls (DCE RPCs) [19] and Transarc Corporation's
Encina metadata management and transactional RPC
software [20].

To meet performance and scalability requirements,
HPSS requires that a PVL mount multiple physical
volumes in parallel to service a single client request. An
HPSS PVL must satisfy all of the requirements and
challenges discussed in this paper. Our PVL design was
implemented for HPSS in the C language in a platform
independent manner, and currently runs on an IBM
RS/6000 computer under the AIX operating system.

The HPSS PVL is a multitasking server built on
top of DCE threads. It uses DCE RPCs to communicate
with clients, PVRs and Storage System Manager
applications. Unix sockets are used to communicate with
Movers. The PVL stores its metadata (internal
information about configurations, volumes, requests,
etc.) using Encina's Structured File System (SFS)
transactional metadata storage system. The PVL
maintains support interfaces allowing storage system
management applications access to configuration and
status.

Our PVL presents an API to its client which is a
superset of the APIs presented in our design above.
When each request is committed, a job is created in the
PVL and placed at the end of an ordered job list. A
second list of all cartridges which have been requested by
existing jobs is also maintained. These two lists form a
two dimensional sparse matrix [see Figure 4].
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Figure 4. Matrix of jobs and active cartridges

Note that in Figure 4 VOL003 and VOL004 will
not be mounted even though drives are available. This is
because a job must have all of its cartridges assigned
before it can allocate any drives.

Each node in the matrix is a separate activity. Each
activity represents a single volume that needs to be, or
has been, mounted. An activity moves through a set of
states first acquiring resources, then mounting a cartridge
in a drive, and finally dismounting the cartridge and
assigning the resources to the next waiting activity.
Some of the more common activity states, transitions
between these states, and some expanded implementation
details are described below:

UNCOMMITTED

Activities in this state represent volume mounts
that have been added to a job by a call to
MountAdd, but have not yet been committed by
the client.

CART_WAIT

Once a job has been committed, all activities
within that job are changed from
UNCOMMITTED to CART_WAIT state.
Activities in the CART_WAIT state are
actively attempting to reserve their respective
cartridges. Once a cartridge is successfully
reserved for an activity it will transition into the
CART_ASSIGNED state.

CART_ASSIGNED

When a cartridge is assigned to an activity the
activity waits in the CART_ASSIGNED state
for all other activities in the job to have a
cartridge assigned. Once all activities have a
cartridge assigned the activity transitions to one
of two states. First, if the volume is to be
operator mounted, and there are no multi-
volume mounts pending involving the operator
PVR, then the activity will transition to a



MOUNT_PENDING state. This is done because
operator mounts do not reserve drives in our
implementation in order to optimize cartridge
vault management and to allow for out-of-order
mount handling in operator PVRs.

If the volume is to be robotically mounted, or if
a multi-volume mount is pending that involves
the operator PVR, then the activity transitions
into DRIVE_WAIT state. Multi-volume
operator mounts cause all subsequent operator
mounts to queue in the DRIVE_WAIT state in
order to prevent deadlock caused by out-of-order
mounts.

DRIVE_WAIT

All activities that describe robotic mounts are
placed into the DRIVE_WAIT state while they
attempt to reserve drive resources. Available
drive counts are used to assign drives rather than
assigning specific drives. This allows the PVR
to make a selection of which drive to use. The
PVR may base the selection on criteria like the
distance of the cartridge from the drive. Since
the PVL is unaware of the details of each robots
configuration, the selection of a specific drive is
always left up to the PVR.

A DRIVE_WAIT activity transitions to a
MOUNT_PENDING state once an appropriate
drive is reserved. Activities that represent
operator mounts which are waiting behind
pending multi-volume mounts wait in
DRIVE_WAIT state until the multi-volume
mounts are complete, at which time they also
transition to the MOUNT_PENDING state.

MOUNT_PENDING

Once an activity achieves the
MOUNT_PENDING state the mount request is
issued to the appropriate PVR. Activities
remain in the MOUNT_PENDING state until,
either the PVR responds that it has mounted the
cartridge, or the cartridge is found to have been
mounted when the PVL polled a drive. PVL
drive polling was implemented to deal both
with operator mounted drives, and with PVRs
that don't provide reliable mount notification.

READING_LABEL

An activity is in this state during the time that
a PVL takes to verify that a PVR mounted the
proper volume by reading the internal media
label (when such verification is appropriate).

MOUNTED

Once the PVL has determined that the PVR has
correctly mounted a volume, the appropriate
activity is placed in MOUNTED state until
either a dismount request is received or an error
requiring clean-up of an activity occurs.

Other States

A number of other activity states exist which
we will not detail here. Included are states to
deal with dismounting, errors, and states to deal
with the injection and ejection of cartridges.

The HPSS implementation of our design currently
supports StorageTek 4400, IBM 3494, IBM 3495,
Ampex DST800 and operator mounted drives. The next
release of the HPSS PVL will include enhanced device
support and will support mounts requested for magnetic
disk volumes as required by the IEEE Reference Model
for Open Storage Systems Interconnection.

Even though HPSS does not currently support any
optical disk devices, our PVL does support the concept
of multi-sided cartridges. This is necessary for future
support of optical devices, but may also be needed by
tape devices. For example, Ampex DD2 cartridges can be
divided into multiple partitions and it is possible to
mount cartridges such that the drive firmware enforces
access to only a specific partition. In this case a single
DD2 cartridge could be considered to have multiple
volumes.

HPSS was successfully demonstrated at
Supercomputing '94. As part of that demonstration the
HPSS PVL was involved in mounting one-way, two-
way, and four-way media stripes of tape and disk media.
At the time this paper was written, February 1995, a
preliminary release of HPSS was being installed and
tested at several early deployment sites. The preliminary
release contains support for striped tape. The next release
of HPSS adds support for striped disk, multiple storage
hierarchies, and migration and caching between
hierarchies.

While the HPSS PVL was implemented to fill the
need for a PVL satisfying the requirements of a high-end
storage system, it also served as a proof of concept of
our PVL design. It showed that expanding upon typical
PVL interfaces and dealing with deadlock challenges was
not only possible, but could be accomplished with a
relatively simple design. With time we are sure that
some of the enhancements mentioned above will be added
to the HPSS PVL. However, based upon input from the
operational sites involved in the development of HPSS,
we found that implementing these enhancements will
have to be done carefully because of their site specific
nature.



7. Conclusion
A PVL mounting striped, removable media can

cause deadlocks three different ways: contention for
drives, contention for cartridges, and mounting out-of-
order volumes. There are several well known methods of
eliminating deadlock when acquiring serially reusable
resources; we chose deadlock avoidance for our PVL
design. A PVL is ideally suited to deadlock avoidance
techniques because its clients are able to specify all of
the resources which will be used by a single request and
because deadlock avoidance does not require the
preemption of resources. The key to our deadlock
avoidance algorithm is to prevent circular dependencies
by requiring that the PVL follow a strict precedence
ordering in reserving resources and that those resources
be assigned to client requests in a specific order. This
PVL design has been demonstrated through it's
implementation as part of the National Storage
Laboratory's HPSS system.
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